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Abstract 19 
We introduce an impact-based framework to evaluate seasonal forecast model skill in capturing 20 
extreme weather and climate events over regions prone to natural disasters such as floods and 21 
wildfires. Forecasting hydroclimatic extremes holds significant importance in an era of 22 
increasing hazards such as wildfires, floods, and droughts. We evaluate the performance of five 23 
Copernicus Climate Change Service (C3S) seasonal forecast models (CMCC, DWD, ECCC, 24 
UK-Met, and Météo-France) in predicting extreme precipitation events from 1993 to 2016 25 
using 14 indices reflecting timing and intensity (using absolute and locally-defined thresholds) 26 
of precipitation at a seasonal timescale. Performance metrics, including Percent Bias, Kendall 27 
Tau Rank Correlation Score, and model discrimination capacity, are used for skill evaluation. 28 
Our findings indicate that the performance of models varies markedly across regions and 29 
seasons. While the models generally show good skill in the tropical regions, their skill in extra-30 
tropical regions is markedly lower. Elevated precipitation thresholds (i.e., higher intensity 31 
indices) correlate with heightened model biases, indicating deficiencies in modelling severe 32 
precipitation events. Our analysis using an impact-based framework highlights the superior 33 
predictive capabilities of the UK-Met and Météo-France models in capturing the underlying 34 
processes that drive precipitation events, or lack thereof, across many regions and seasons. 35 
Other models exhibit strong performance in specific regions and seasons but not globally. 36 
These results advance our understanding of an impact-based framework for capturing a broad 37 
spectrum of extreme weather and climate events and further inform the strategic fusion of 38 
diverse models across different regions and seasons, thereby offering insights for disaster 39 
management and risk analysis. 40 
 41 
 42 
 43 
Key Points 44 

• C3S models demonstrate notable skill in forecasting seasonal variability of 45 
precipitation, particularly in the tropical and sub-tropical regions. 46 

 47 
• UK-Met and Météo-France consistently outperform other models, demonstrating 48 

superior accuracy and reliability in various regions and seasons 49 
 50 

• Our Impact-Based Framework offers valuable insights for targeted risk assessments, 51 
particularly in wildfire- and flood-prone regions using seasonal forecast models. 52 
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 53 
Plain Language Summary 54 
 55 
We introduce a novel model assessment framework by investigating the impact of extreme 56 
events in areas prone to disasters such as floods and wildfires. We investigate how well five 57 
seasonal forecast models predict extreme precipitation, and related events such as floods and 58 
droughts. We assess the performance of models through 14 indices that assess the timing and 59 
intensity of precipitation during different seasons and in various regions globally. Our results 60 
show that some models outperform others in certain regions and seasons. We find that two 61 
models, UK-Met and Météo-France, are particularly skillful at predicting extreme events in 62 
various regions and seasons. This information is important for improved management and 63 
understanding of the risks of natural disasters. 64 
 65 
 66 
 67 
 68 
 69 

1. Introduction 70 
  71 
Precipitation plays a crucial role in momentum flux exchange at the ocean– atmosphere-land 72 
interface (Xue et al., 2020), and as such, is one of the primary outputs of weather and climate 73 
models (Tapiador et al., 2019). Numerous international initiatives such as the North American 74 
Multi-Model Ensemble (NMME, https://www.cpc.ncep.no aa.gov/products /NMME/) and 75 
Copernicus Climate Change Service (C3S, https://cds.climate .copernicus.eu/) multi-system 76 
seasonal forecast models forecast precipitation, and other Météorological factors, at various 77 
spatiotemporal scales. Such forecasts are used for a variety of purposes, including extreme 78 
event early warning. Forecast models rely on the sources of atmospheric predictability, such as 79 
modes of variability including El Niño–Southern Oscillation (ENSO), Madden–Julian 80 
oscillation (MJO), Quasi-Biennial Oscillation (QBO), and Indian Ocean Dipole (IOD). Other 81 
sources of predictability include anomalies in the initial state of an Earth system component 82 
with a persistence time that aligns with the projected forecast duration (i.e., large-scale 83 
anomalies in upper ocean heat content, sea ice, snowpack, soil moisture), and external forcing 84 
(Assessment of Intraseasonal to Interannual Climate Prediction and Predictability, 2010; 85 
Baldwin et al., 2003; Committee on Developing a U.S. Research Agenda to Advance 86 
Subseasonal to Seasonal Forecasting et al., 2016; Lau & Waliser, 2012; Shukla et al., 2000; 87 
Zhang et al., 1997). Despite its significance, seasonal forecast models face difficulties in 88 
predicting precipitation spatial patterns, timing and intensity (Tapiador et al., 2019; Mallakpour 89 
et al. 2022).  This is because the predictive capabilities of seasonal forecasting models are 90 
constrained by the uncertainty in initial and boundary conditions, climate change-induced 91 
modifications of teleconnection patterns, imperfect parameterization schemes, the variability 92 
in parameters, quality of observation systems, model biases, and inherent properties of the 93 
climate system (Villarini et al., 2011; Xu et al., 2021; Kumar & Zhu, 2018). Also, seasonal 94 
forecast performance can vary across regions due to the complex and region-specific 95 
interactions between climate drivers and local environmental factors (Hao et al., 2018). 96 
 97 
Accurate precipitation predictions are of great importance in the formulation of mitigation and 98 
adaptation measures for weather and climate extreme events as well as minimizing impacts 99 
from their  cascading hazards such as flood, drought, and wildfire (Gebrechorkos et al., 2022; 100 

Frédéric Vitart & Robertson, 2018). Recently several environmental and Climate Forecasting 101 

Systems such as the hydrological forecasting system, the Canadian Forest Fire Weather Index 102 
System (http://cwfis.cfs.nrcan.gc.ca/en_CA/background/summary/fdr), and the global drought 103 
forecasting system (http://iridl. ldeo.columbia.edu/maproom/Global/Drought/Global/CPC_ 104 
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GOB/MME_pt_Persist.html) have been developed, using seasonal forecasts as input with the 105 
purpose of risk assessment and response (Alfieri et al., 2013; Arheimer et al., 2020; Samaniego 106 
et al., 2019; Thielen et al., 2009). The accuracy and trustworthiness of such systems is highly 107 
dependent on the process representation and parametric accuracy of the seasonal forecast 108 
models (Gebrechorkos et al., 2022; Wanders & Wood, 2016). It is essential to assess the 109 
underlying performance of different forecast models across diverse global regions, and specific 110 
to the impacts that forecast errors may induce to identify the most effective and reliable sector- 111 
and region-specific models.  112 
 113 
While studies have evaluated the skill of seasonal forecast models in predicting total 114 
precipitation at the sub seasonal to seasonal scales (Becker et al., 2014; Gebrechorkos et al., 115 
2022; Nobakht et al., 2021; Roy et al., 2020), there is a need for an impact-based assessment 116 
of forecast models that can inform their applicability for target extremes (e.g., flood, wildfire). 117 
Traditional forecast model performance assessments conduct a top-down hazard information 118 
approach by mainly investigating the model’s skill in capturing weather patterns in comparison 119 

to the reference datasets (De Andrade et al., 2019; Moron & Robertson, 2020; Frédéric Vitart 120 

& Robertson, 2018). The shift towards impact-based assessment framework reflects the 121 
evolving landscape of climate science and its increasing relevance in the face of a changing 122 
climate (Rad et al. 2022). It emphasizes the importance of moving beyond traditional 123 
evaluation methods and towards a comprehensive understanding of how weather forecasts 124 
directly influence society, ecosystems, and infrastructure resilience (AghaKouchak et al., 2018; 125 
Khorshidi et al., 2020; Mallakpour et al., 2022; Modaresi Rad et al., 2022; Sadegh et al., 2018). 126 
Such a framework considers the vulnerability of the local environment to specific weather 127 
events and warns of the associated impacts. An instance of such an influence might involve a 128 
chain reaction of hazards, like flooding due to back-to-back heavy rainfall events (Sadegh et 129 
al. 2018) or wildfires resulting from consecutive weeks of no precipitation and increased 130 
temperature, which can create conditions conducive to ignition and wildfire growth (Khorshidi 131 
et al. 2020). Impact-based assessment of seasonal precipitation forecasts involve assessing the 132 
effectiveness of models by considering the impact of extreme precipitation on various sectors 133 
and systems. It goes beyond assessing the mere accuracy of forecasted precipitation and aims 134 
to understand how well the forecasts translate into meaningful information for decision-making 135 
and risk management (AghaKouchak et al., 2023).  136 
 137 
Our main objective in this study is to evaluate the skill of the five state-of-the-art seasonal 138 
prediction systems from the Copernicus Climate Change Service (C3S) multi-model at a global 139 
scale in predicting particular features of extreme events which could lead to hazards. We note 140 
that the primary goal in this study is to identify the models that are most representative of the 141 
underlying processes that drive weather and climate events at various spatial and temporal 142 
scales. While the importance of post-processing techniques in improving the reliability of the 143 
seasonal forecast models is undeniable, we evaluate raw forecasts to gain insights into their 144 
inherent model skills and deficiencies without the influence of statistical post-processing. This 145 
enables us to detect essential similarities and differences between forecast models and to assess 146 
their inherent skill in capturing extreme events. We utilize a selection of climate extreme 147 
indices designed to encompass diverse aspects of extreme events, including their frequency, 148 
timing, and intensity. These indices are defined by the Expert Team on Climate Change 149 
Detection and Indices, and have been investigated in other studies (Chervenkov et al., 2019; 150 
Chervenkov & Slavov, 2019). These indices are useful in diagnosing the variability of 151 
precipitation at various timescales posing them as proper metrics for impact-based assessment. 152 
We refine these indices to capture weather patterns that could cause hazards such as flood and 153 
wildfire. We conduct an evaluation of forecast models to assess their capability in discerning 154 
situations that result in the occurrence of a specific event from those that lead to its non-155 
occurrence. As a related task, we perform a targeted analysis of model performance in regions 156 
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with high risk of wildfires and floods. The following questions are answered in this study: Do 157 
seasonal forecast models have the capability to represent the variability of precipitation 158 
throughout the season? Can specific models lend themselves as superior alternatives for multi-159 
model fusion, and thereby enhance targeted extreme event prediction in specific regions and 160 
seasons? 161 
 162 
2. Methodology 163 
This study examines the effectiveness of precipitation forecasts of five seasonal forecast 164 
models from the C3S project including the Centro Euro-Mediterraneo sui Cambiamenti 165 
Climatici (CMCC: version 35), Deutscher Wetterdienst (DWD: version 21), Environment and 166 
Climate Change Canada (ECCC: version 3), Météo France (Météo-France: version 8), and UK 167 
Met Office (UK-Met: version 601) models in accurately predicting extreme precipitation 168 
indices in a three month lead time during the hindcast period spanning 1993 to 2016 (refer to 169 
Table S1). Validation was carried out using the fifth generation ECMWF reanalysis (ERA5) 170 
precipitation product which we refer to as "reference data" hereafter.  171 
 172 
 173 
2.1 Data Preparation 174 
We employed eight types of distinct climate extreme indices, following Expert Team on 175 
Climate Change Detection and Indices (https://www.wcrp-climate.org/data-etccdi) definitions, 176 
to encompass different aspects of precipitation extremes, such as event duration, intensity, and 177 
frequency (Dunn et al., 2022). We used 1mm and 10mm precipitation thresholds (representing 178 
wet days, and heavy precipitation days respectively) for the calculation of climate extreme 179 
indices. In addition to these absolute thresholds, we incorporated the 75th percentile of daily 180 
historical data in each grid from the ERA5 (reference dataset) as a secondary criterion in 181 
calculating certain indices. This approach aims to ensure the indices are reflective of local 182 
climate. For such indices, both the absolute threshold and the percentile-based criteria should 183 
be met. Combination of metrics and thresholds resulted in a comprehensive set of 14 climate 184 
extreme indices (Table 1). The assessment of seasonal skill for the models was carried out 185 
using forecast initializations on the first day of February, May, August, and November with a 186 
3-month lead time, i.e., March-May (MAM), June-August (JJA), September-November 187 
(SON), and December-February (DJF) seasons respectively. 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 
 197 
Table 1. Extreme indices used to evaluate seasonal forecast models. 198 

Abbreviation Index Abbreviation Index 

cdd1 Maximum consecutive 
dry days 1mm 

nwd10q75 Number of wet days 10mm and 75th 
percentile 

cdd10 Maximum consecutive 
dry days 10mm 

hpd Heavy precipitation days (days with 
precipitation above 10mm) 

cwd1 Maximum consecutive 
wet days 1mm 

vhpd Very heavy precipitation days (days with 
precipitation above 20mm) 

cwd10 Maximum consecutive 
wet days 10mm 

h1dp Highest 1-day precipitation amount 

int1 Daily pr intensity 1mm h5dp Highest 5-day precipitation amount 
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int10 Daily pr intensity 
10mm 

propd1 Proportion of days with precipitation at or 
above 1mm 

nwd1q75 Number of wet days 
1mm and 75th 

percentile 

propd10 Proportion of days with precipitation at or 
above 10mm 

 199 
 200 
The analysis was conducted on the ensemble mean for each model. All forecast models and 201 
reference data were re-gridded to a consistent one-degree resolution.  For spatial aggregation, 202 
we conducted our analysis over the sixth-version of Intergovernmental Panel on Climate 203 
Change (IPCC) regions shown in Table S2 (Iturbide et al., 2020). The IPCC divides the world 204 
into major regions, each of which includes a group of countries or territories that share similar 205 
climate characteristics, geographic features, and socio-economic factors. The IPCC regions, 206 
also known as the "IPCC Regional Reporting", are a set of geographical regions used by the 207 
IPCC as a framework for understanding how climate change affects different parts of the world 208 
and to facilitate the assessment of climate change impact, vulnerability, and adaptation 209 
strategies at the regional level.  210 
 211 
2.2 Model Evaluation 212 
For evaluation and comparison of forecast models against reference data, we employed Percent 213 
Bias (Rudisill et al., 2024; Spies et al., 2015). Here, zero signifies a perfect alignment between 214 
model predictions and reference data, and positive-bias/negative-bias signifies over-215 
estimation/under-estimation (Eq.1). 216 
 217 

𝑃𝐵𝐼𝐴𝑆 = 100
∑ (𝑀𝑖−𝑅𝑖)
𝑁
𝑖=1

∑ 𝑅𝑖
𝑁
𝑖=1

     
Eq.1 

 218 

where 𝑀𝑖 is the model simulation and 𝑅𝑖 is the value of the reference data at time 𝑖.  219 
 220 
We also conducted a discriminant analysis to determine if the forecast skill varied in different 221 
sections of the precipitation distribution. To achieve this, we categorized the reference datasets 222 
in each grid into three distinct groups using upper and lower terciles: below-normal conditions 223 
(lower tercile), above-normal conditions (upper tercile), and normal conditions (middle 224 
tercile). Subsequently, we employed a random forest algorithm to perform the classification 225 
task on the forecast models in each grid. The random forest classifier was trained on 75% of 226 
the forecast data. The performance of the classifier was evaluated using the remaining 25% of 227 
the forecast data (i.e., test set). The classifier predicted the probabilities for each precipitation 228 
category (below-normal, above-normal, or normal) for each sample in the test set. These 229 
probabilities were then used to calculate the area under the Receiver Operating Characteristic 230 
(ROC) curve (ROC AUC), which measures the forecast discrimination. The ROC AUC is built 231 
based on the true positive rate (sensitivity) and false positive rate (1-specificity) obtained at 232 
various threshold values for a multi-class classification. It takes values between 0 to 1, in which 233 
a higher ROC AUC score indicates better discriminatory power of the forecasts. Here we 234 
categorized the ROC score to level of discrimination (i.e., in our case ability to discriminate 235 
extreme events from non-extreme events). The values of ROC score between 0.0 to 0.6 is 236 
considered no discrimination, 0.6 to 0.7 is considered satisfactory discrimination, 0.7 to 0.8 is 237 
considered good discrimination, 0.8 to 0.9 is considered very good discrimination, and 0.9 to 238 
1.0 is considered excellent discrimination (Mandrekar, 2010). Kendall's Tau rank correlation 239 
analysis is used to measure the strength of the relationship between climatic indices extracted 240 
from forecast models and reference data aggregated over each IPCC regions (Sen, 1968).  241 
 242 
 243 
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2.3 Impact-based framework  244 
The IPCC regions which were vulnerable to wildfire and flooding were identified by 245 
categorizing them based on the proportion of farmland (Friedl & Sulla-Menashe, 2022), 246 
proportion of burned areas (Chuvieco et al., 2018; Lizundia-Loiola et al., 2020), percentage of 247 
flood-affected zones (Tellman et al., 2021), proportion of built-up regions (Gong et al., 2020), 248 
and population density (Schiavina et al., 2023) (see Figure S1). We specifically focused on 249 
regions that not only had an elevated risk of wildfire (flood) exposure, but also had a significant 250 
built-up area and population density. These selected regions were earmarked for additional 251 
analysis.  252 
 253 
We carefully selected relevant extreme indices pertinent to the corresponding climate-induced 254 
hazard in each region. For the regions with wildfire as a prominent natural hazard, we selected 255 
maximum consecutive dry days 1mm (cdd1), and proportion of days with precipitation at or 256 
above 1mm (propd1) indices as the relevant indicators of a weather condition conducive to or 257 
preventive of wildfire. For regions with a high risk of flooding, we selected number of wet days 258 
with 10mm precipitation and 75th percentile of the reference data (nwd10q75) and heavy 259 
precipitation days (hpd) indices as the relevant indicators. We also determined the season with 260 
the highest occurrence rate for each specific hazard and region. In every region, we identified 261 
the top-performing model in terms of predictive accuracy using the following selection criteria. 262 
Initially, we prioritized models with a combination of higher correlation (statistically 263 
significant) and lower bias. If multiple models demonstrated similar high performance, we 264 
utilized  Taylor diagrams to select models that aligned more closely with the reference data 265 
across various performance metrics. Our evaluation then focused on assessing the models’ 266 
forecast skill with respect to relevant indices in the identified hazard-prone seasons for each 267 
region. By adopting this impact-based approach, we aimed to pinpoint the most suitable models 268 
and indices for each climate-induced hazard, enabling more effective and tailored climate risk 269 
assessments. 270 
 271 
 272 
3. Results 273 
 274 
3.1 Global Analysis of Model Bias 275 
The analysis of Percent Bias at a global scale across the four seasons reveals a consistent 276 
tendency of underestimation in all forecast models for most of the extreme wet precipitation 277 
indices (Figure 1 and Figure S2), but the performance for other indices is rather mixed. The 278 
cdd1 index, which measures the maximum consecutive dry days at 1mm threshold, shows 279 
negative bias for most but not all regions, while cwd1 index, which measures the maximum 280 
consecutive wet days at 1mm threshold, shows positive bias for all regions implying that the 281 
models predict more precipitation days compared to reference dataset (Figure 1). This is while 282 
cdd10 shows positive bias values and cwd10 shows negative bias values, implying that while 283 
models are capturing more wet days, they mostly capture light precipitation, and they do not 284 
properly capture extreme events with consecutive days of heavy precipitation. This is aligned 285 
with the propd1 index showing positive biases (higher number of precipitation days) while 286 
propd10 index showing negative biases (Figure 1 and Figure S2). This pattern is consistent 287 
with the findings of regional C3S assessment studies, for example in Africa (Gebrechorkos et 288 
al., 2022). These observations underscore the limitations in forecast capabilities for accurately 289 
modelling persistent wet and dry periods. Introduction of secondary constraints (i.e., 75th of 290 
the reference data) to the indices increases the bias, signifying the models’ limitation in 291 
capturing severe extreme events.  292 
 293 
The bias values for int1 index – daily precipitation more than 1mm – are higher than those of 294 
int10 across all seasons and models. This is also because of the models’ tendency to capture 295 
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more wet days with at least 1mm precipitation. Focusing on h1dp and h5dp indices, forecasts 296 
are able to model the extreme precipitation events that happen over 5 consecutive days more 297 
skillfully than those extending one day (Figure S2). Figure 1 and Figure S2 show that the 298 
CMCC, DWD, and ECCC models demonstrate relatively lower ability to capture extreme 299 
rainfall events within the extratropical IPCC regions compared to the UK-Met and Météo-300 
France models across the four seasons. However, in the tropical and northern subtropical 301 
regions, all models (especially UK-Met and Météo-France) exhibit superior performance 302 
(lower bias) in capturing extreme events, compared to extratropical regions. This is attributed 303 
to the model’s predictive skill in grasping large-scale teleconnection patterns (Giuntoli et al., 304 

2022). Refer to section S1 for additional information about global precipitation anomalies 305 

patterns across the five forecast models. 306 
 307 
For indices measured in terms of the number of days, we observed larger bias compared to 308 
those representing total rainfall, indicating  limitations of the models in accurately replicating 309 
the variation of precipitation throughout the season (Figure 1 and Figure S2). Indices that 310 
represent magnitude and intensity of precipitation (i.e., precipitation intensity, highest 1-day 311 
precipitation amount, and highest 5-day precipitation amount) exhibit lower biases, suggesting 312 
the model’s skill in simulating total seasonal precipitation. The UK-Met and Météo-France 313 
models exhibit higher skill in capturing extreme events, demonstrating favorable performance 314 
across various regions when considering 75th percentile threshold levels.  315 
 316 
We opted to utilize the percentiles of reference data climatology as a consistent benchmark 317 
across all models, rather than relying on the percentile of forecast models. This choice ensures 318 
intercomparability in models' ability to depict climate patterns. Figure S4 illustrates the 319 
difference in Percent Bias when using percentiles derived from the reference data climatology 320 
versus those from the forecast model, specifically for the UK-Met and Meteo-France models. 321 
Further comparison reveals that the Meteo-France model exhibits larger biases than the UK-322 
Met model across most regions globally, indicating its weaker representation of climate 323 
patterns in terms of Percent Bias. 324 
 325 

 326 
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Figure 1. Percent Bias of the five C3S models for a) MAM, b) JJA, c) SON, and d) DJF seasons. 327 
Grids with grey circles shows the regions where reference data indicated the existence of 328 
extreme events while the forecast models could not capture any events satisfying the index 329 
requirements. Grids with no values reflect regions that both reference data and forecasts did 330 
not capture any events satisfying the index requirements. The colour bar is constrained to the 331 
range of -100 to 100 for visualization purposes. This range was chosen to enhance visibility of 332 
variations in regions with small bias. Actual values occasionally exceed this range. IPCC 333 
regions are color-coded based on their location within respect to latitudinal zones. See Table 334 
S2 for names of IPCC regions. 335 
 336 
 337 
3.2 Global Analysis of ROC Scores 338 
We use discrimination analysis to assess how well the year-to-year variations in the forecasted 339 
precipitation match those in the observations. Measurements of ROC score in Figure 2 and 340 
Figures S5 show superior performance of forecast models in the tropical and subtropical 341 

regions located in Atlantic, Indian ocean, and west Pacific regions (Guimarães et al., 2021; Jie 342 

et al., 2017). The skill level, however, varies across different models and seasons over Africa. 343 
Notably, the Météo-France and UK-Met models exhibit superior performance during the SON 344 
and MAM seasons (i.e., indices with satisfactory, good, very good, and excellent 345 
discriminations are more frequent). The exceptional performance of the Météo-France model 346 
in African regions has been the subject of discussion in prior studies (Gebrechorkos et al., 347 
2022). Furthermore, the UK-Met model demonstrates a higher level of skill compared to the 348 
other four models in predicting extreme events in several Australian regions. This elevated skill 349 
of the UK-Met model is particularly pronounced during the MAM season whereas in JJA, 350 
SON, and DJF the skill drops dramatically. The lower performance of ACCESS-S1 model 351 
(which is the same model used in UK-Met but with different ensemble generation scheme, 352 
ensemble size and the configuration of the system for operational forecasting) over Australia 353 
during southern hemisphere summer (DJF) is also concluded in other studies (King et al., 354 
2020).  355 
 356 
The prevalence of grids with no discrimination ROC categories is more pronounced in 357 
extratropical regions, possibly due to the inherent lower predictability of extratropical 358 
variations, and model limitations in representing interactions between tropical and extratropical 359 
regions, as well as land surface processes (De Andrade et al., 2019).  Notably, the CMCC, 360 
DWD, and ECCC models fail to detect any extreme event in many extratropical regions, as 361 
indicated by the absence of discrimination categories in Figure S5. This disparity is particularly 362 
conspicuous when compared to the UK-Met and Météo-France models.  363 
 364 
 365 
 366 
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 367 
Figure 2. Discrimination levels using categorized ROC score of the five models for a) MAM, 368 
b) JJA, c) SON, and d) DJF seasons. Grids that are shaded in white represent regions that either 369 
or both reference data and model did not capture any events satisfying the index requirements. 370 
IPCC regions are color-coded based on their location within respect to latitudinal zones.  371 
 372 
 373 
 374 
 375 
3.3 Wildfire-prone Regions: Targeted Forecast Performance Analysis 376 
 377 
Many scientific investigations have underscored the notable influence of climatic patterns on 378 
the initiation of wildfires (Sharma et al., 2022; Turco et al., 2023). Extended periods of elevated 379 
temperatures devoid of precipitation events establish an environment conducive to fire ignition 380 
and propagation, intensifying the combustibility of vegetated areas (Alizadeh et al., 2021, 381 
2023). As the duration of consecutive dry days (days without rainfall or with rainfall below a 382 
specific threshold) extends, the moisture content of fuel diminishes, increasing its susceptibility 383 
to ignition (Abatzoglou & Williams, 2016). Refer to section S2 for detailed analysis of wildfire-384 
related indices on a global scale, while in the following we will focus on specific regions with 385 
wildfire as a prominent natural hazard. 386 
 387 
We now focus on the four regions where the wildfire is a prominent natural hazard: Northern 388 
Australia (NAU), South-Eastern Africa (SEAF), Western North America (WNA), and 389 
Northern South America (NSA) regions. Within each region, a particular season characterized 390 
by an elevated likelihood of wildfire incidence is designated for subsequent analysis. In 391 
Northern Australia, the peak period for wildfire aligns with the dry SON season. From August 392 
to December, many regions of Southern Africa experience the onset of their wildfire season 393 
therefore we selected the SON season for further analysis. In the United States, wildfire activity 394 
is a year-round concern, but the most severe wildfires arise during the summer months (JJA 395 
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season), particularly in the western regions. In Latin America, the fire season typically 396 
commences at the end of January and extends through April (DJF season).   397 
 398 
Focusing on the NAU region and using the maximum number of consecutive dry days index, 399 
all models except for CMCC demonstrate a notable correlation with the reference data (Figure 400 
3a). Furthermore, Météo-France and ECCC display lower bias compared to other models 401 
(Figure 3b). However, in the Taylor diagram presented in Figure 3c, the ECCC model 402 
establishes its supremacy over Météo-France by exhibiting a standard deviation that is more 403 
closely aligned with the reference data. The overestimation of precipitation (and consequently 404 
underestimation of dry days) in CMCC and UK-Met models over NAU region is visible in 405 
Figure 4 where they exceed the 1mm threshold earlier and with steeper slope compared to other 406 
models resulting in the underestimation of cdd1 index. 407 

 408 
Figure 3. Performance metrics for the maximum consecutive dry days index with 1mm 409 
precipitation threshold (cdd1): a) Kendall's Tau coefficient, b) Percent Bias, and Taylor 410 
diagram for c) NAU, d) SEAF, e) WNA, and f) NSA regions respectively.  411 
 412 
 413 
We extended our model selection framework to other three regions and the main findings reveal 414 
distinct model performance variations in different regions. The ECCC model is particularly 415 
strong in forecasting consecutive dry days in the NAU region and closely tracks reference data. 416 
In contrast, the DWD model emerges as the top performer in the SEAF and NSA regions, 417 
exhibiting the highest correlation, lower bias, and lower root mean square error. The UK-Met 418 
model excels in the WNA region, demonstrating a close match with the reference data's 419 
standard deviation. These variations in model performance are attributed to their abilities in 420 
simulating significant large-scale climate variabilities such as ENSO, IOD, and north 421 
Australian SSTs. Refer to section S3 for further details regarding the analysis of proportion of 422 
days with precipitation acceding 1mm threshold (propd1) index in wildfire prone regions.  423 
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 424 
Figure 4. Annual climatology time series of the precipitation for five C3S models and the 425 
ERA5 reference data over NAU, SEAF, WNA, and NSA regions. 426 
 427 
 428 
3.4 Flood-prone Regions: Targeted Forecast Performance Analysis 429 
 430 
Consecutive occurrences of extreme precipitation over successive days can significantly 431 
elevate the probability of widespread flooding, and since extreme events like heavy 432 
precipitation days are becoming more frequent, reliable forecast models are pivotal. Many 433 
investigations have documented instances of substantial flooding due to consecutive multi-day 434 

extreme precipitation (Ávila et al., 2016; Du et al., 2022; Rivoire et al., 2023). In 2021, extreme 435 

precipitation events across central Europe caused severe flooding in many regions, resulting in 436 
more than 200 fatalities and significant damage to infrastructure (Tradowsky et al., 2023). To 437 
assess the capabilities of the C3S models across IPCC regions, where flooding is a predominant 438 
natural hazard, we employed the heavy precipitation days index (hpd) and number of wet days 439 
with 10mm precipitation threshold index, also exceeding the 75th percentiles of the reference 440 
dataset (nwd10q75) for further analysis. Refer to section S4 for detailed analysis regarding the 441 
analysis of flood-related indices on a global scale, while  in the following we focus on specific  442 
regions with flood as a prominent natural hazard.  443 
 444 
In the South-East Asia (SEA) monsoon region during JJA (flood season), the UK-Met 445 
demonstrates a superior performance compared to other models, exhibiting notably high 446 
correlation and lower bias values (Figure 5a and 5b). Although, the Taylor diagram indicates 447 
that UK-Met exhibits a larger standard deviation value compared to other models, the markedly 448 
lower bias values make this model the optimal choice here (Figure 5c). This is also evident in 449 
the Figure 6a where Météo-France shows overestimation of precipitation, ECCC shows 450 
underestimation, while UK-Met, DWD, and CMCC follow the reference precipitation very 451 
closely.  Overall, in this region the prediction skill is mostly higher in the pre-monsoon (April–452 
May) and post-monsoon (October–November) seasons, while during the monsoon season 453 
(JJA) forecast skill is lower because of the monsoon influences on precipitation predictability 454 
(Wanthanaporn et al., 2023). 455 
 456 



12 
 

In the Western and Central Europe (WCE) region during the DJF flooding season, the ECCC 457 
model exhibits higher significant correlation values with reference data compared to other 458 
models (Figure 5). However, all models struggle to adequately capture reference data 459 
variations, as indicated by high RMSE values and low correlation coefficients. In the South 460 
Asia (SAS) region during the JJA season, the UK-Met and CMCC models demonstrate higher 461 
correlation values. The UK-Met model outperforms others by exhibiting smaller bias. 462 
Therefore, the UK-Met model is favored for the SAS region. In the Central North America 463 
(CNA) region during the JJA season, both the UK-Met and Météo-France models exhibit 464 
significant correlation coefficients, while all models display large bias values. Once again, the 465 
UK-Met model stands out due to its lower bias compared to the other models. 466 
 467 
Upon eliminating the constraint associated with the 75th percentile of the reference data in 468 
predicting heavy precipitation days, there is an observable reduction in bias values across SEA 469 
and SAS regions for the hpd index (Figure S9a and S9b). The correlation values are, however, 470 
very similar to those of nwd10q75 index. with removal of the 75th percentile threshold, the 471 
standard deviation values also become more aligned with the reference data (Figure S9c and 472 
S9f). Despite these changes, the order of outperforming models remains consistent.  473 

  474 
 475 
Figure 5. Model performance with respect to the number of heavy precipitation days exceeding 476 
10 mm and the 75th percentile of the reference data (nwd10q75): a) Kendall's Tau coefficient, 477 
b) Percent Bias, and Taylor diagram for c) SEA, d) WCE, e) SAS, and f) CNA regions, 478 
respectively.  479 
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 480 
Figure 6. Annual climatology time series of the precipitation for five C3S models and the 481 
ERA5 dataset over a) SEA, b) WCE, c) SAS, and d) CNA region.  482 
 483 
 484 
3.5 Populated and Densely Built-up Regions: Targeted Forecast Performance Analysis 485 
 486 
We now focus on two regions where the population and built-up density is very high: East Asia 487 
(EAS), and South Asia (SAS) regions. Within each region, a particular season characterized by 488 
an elevated likelihood of consecutive days with rainfall occurrence (which has a significant 489 
impact on urban areas) was selected for further analysis. Moderate rainfall events may not be 490 
inherently destructive, but consecutive days of precipitation, even with low amounts, can have 491 
devastating impacts on the environment and urban areas. In EAS region with high population 492 
density, consecutive days of moderate-intensity rainfall serve as significant triggers for 493 
geological hazards such as landslides and mudslides. These events can lead to immense 494 
damages to lives and property (Zheng et al., 2020).  495 
 496 
 497 
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 498 
Figure 7 Model performance with respect to the consecutive wet days with 1mm precipitation 499 
threshold (cwd1): a) Kendall's Tau coefficient, b) Percent Bias, and Taylor diagram for c) EAS, 500 
d) SAS regions, respectively.  501 
 502 
 503 
In East Asia (EAS) and during the DJF season, the DWD model demonstrates a superior 504 
performance compared to other models, exhibiting notably high correlation and lower bias 505 
values (Figure 7a and 7b). Although, the Taylor diagram indicates that the DWD model 506 
exhibits a larger standard deviation compared to UK-Met in the EAS region, still the markedly 507 
higher correlation values make this model the optimal choice here (Figure 7c). In the SAS 508 
region, the standard deviation of the DWD model is not aligned well with that of the reference 509 
data but considering its high correlation and lower bias values compared to the rest of models, 510 
DWD is the best model in representing underlaying processes of climate patterns in this region 511 
(Figure 7d).  512 
 513 
 514 
3.6 Model Effectiveness in Process Representation Across Seasons and Regions 515 
Over all five models, our findings reveal that with increase in the precipitation threshold the 516 
model’s bias increases, suggesting a lack of skill in modelling severe precipitation events. 517 
Correlation scores are lower in extratropical regions as compared to the tropical regions, likely 518 
due to the inherent unpredictability of extratropical atmospheric variability and model 519 
limitations in replicating land surface processes and tropical-extratropical interactions, 520 
including the Pacific-South American (PSA) pattern and the Pacific-North American (PNA) 521 
pattern, both of which can be influenced by ENSO and the MJO (De Andrade et al., 2019). 522 
This is depicted in Figure 8, where extratropical regions struggled to accurately represent the 523 
underlying processes of climate and weather patterns (i.e., exhibiting statistically significant 524 
correlations while maintaining lower bias values) for most indices. The figure also highlights 525 
the superior performance of UK-Met and Météo-France in representing these processes across 526 
all four seasons. Refer to section S5 for further details regarding the Model effectiveness of 527 
models in process representation. 528 
  529 



15 
 

 530 
Figure 8. Models that best represent the underlying processes based on statistically significant 531 
Kendall's Tau at the 0.05 level and Percent Bias over IPCC regions across 14 climate extreme 532 
indices for a) MAM, b) JJA, c) SON, and d) DJF seasons. IPCC regions are color-coded 533 
based on their location within respect to latitudinal zones. 534 
 535 
 536 
 537 
4. Summary and Discussion 538 
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This study's primary objective is to assess the performance of five C3S seasonal forecast 539 
models in predicting extreme precipitation events spanning the period from 1993 to 2016. To 540 
achieve this, the study assesses 14 extreme precipitation indices defined by the Expert Team 541 
on Climate Change Detection and Indices group. These indices are established based on 542 
specific precipitation thresholds of 1mm, and 10mm, as well as locally-specific 75th percentile 543 
of reference data. The ERA5 reanalysis precipitation dataset is used as reference. 544 
 545 
Our goal is to identify the most reliable models for targeted precipitation risk assessments. We 546 
introduce an impact-based forecast model assessment framework designed to evaluate the 547 
models' effectiveness in predicting extreme weather events that have the potential to instigate 548 
hazardous conditions such as floods and wildfires. We employ performance metrics, including 549 
Percent Bias and the Kendall Tau Rank Correlation Score, to gauge the models' skill in 550 
representing the underlying processes that govern climate and weather pattern and generate 551 
extreme weather events. Furthermore, we evaluate the discrimination capacity of models in 552 
discerning extreme events from non-events.  553 
 554 
While post-processing techniques play a crucial role in enhancing the reliability of seasonal 555 
forecast models, our study primarily aims to identify models that best represent underlying 556 
processes in seasonal climate and weather patterns. By evaluating raw forecasts, we aim to 557 
uncover models’ inherent skills and deficiencies, free from the influence of statistical post-558 
processing. In other words, we use raw model forecasts for our assessment purposes, and avoid 559 
statistical postprocessing that convolutes process-based forecasts with statistical correction. 560 
This choice is specifically useful in the face of extremes repeatedly breaking records in a 561 
changing climate, given statistical methods’ limitations in reproducing out-of-sample data. 562 
This approach enables us to detect key differences between forecast models and assess their 563 
abilities in capturing extreme events.  564 
 565 
One key finding is the consistent bias toward underestimation of most of the wet extreme 566 
climate indices for all models. Nevertheless,  the  UK-Met and Météo-France models are found 567 
to outperform others, which is consistent with the literature (De Andrade et al., 2019; McAdam 568 
et al., 2022). Despite the prevalent bias, statistically significant correlation are found in tropical 569 
and subtropical regions, indicating that the models can reasonably capture the variability of 570 
events even if they underperform in terms of the magnitude of the extremes (F. Vitart et al., 571 
2017). 572 
 573 
We assess model skill in forecasting extreme events in regions susceptible to cascading natural 574 
hazards like wildfires and floods. To evaluate performance in areas prone to wildfires, we 575 
employed indices such as maximum consecutive dry days with precipitation below 1mm 576 
(cdd1), and proportion of days with precipitation at or above 1mm (propd1). For flood-prone 577 
zones, we used number of wet days with precipitation above10mm and the 75th percentile of 578 
the reference data (nwd10q75), as well as heavy precipitation days (days with precipitation 579 
above 10 mm, hpd) as primary indices. Also, for areas with high population density and 580 
elevated built-up density, consecutive wet days with precipitation above 1mm (cwd1) threshold 581 
is used for evaluations. 582 
 583 
In the context of wildfire risk analysis, notable differences in predictive capacities are observed, 584 
with specific models showcasing prowess in different regions and for different extreme 585 
precipitation indices. In the Northern Australia region, Météo-France and ECCC models 586 
display robust performance in predicting consecutive dry days. In the Southern Africa region, 587 
the DWD model emerged as a frontrunner for predicting extreme precipitation events. The UK-588 
Met model shows promising results for Western North America. Lastly, the DWD model shows 589 
good performance for the North South America region.  590 
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 591 
For flood-prone regions, the UK-Met model demonstrates superior predictive capabilities in 592 
the South-East Asia during the monsoon season (JJA). In Western and Central Europe during 593 
the flood season (DJF), the ECCC model excels with notable correlation and comparable bias, 594 
despite challenges in capturing reference data variations. In South Asia and during the JJA 595 
season, the UK-Met and CMCC models excel, with the UK-Met showing favourable 596 
correlation and lower bias.  597 
 598 
Forecast models showed superior results for tropical regions than others globally. Lower 599 
correlation scores in extratropical regions can be attributed to the inherent unpredictability of 600 
extratropical variability and the errors stemming from model deficiencies in representing 601 
teleconnections (De Andrade et al., 2019). Our analysis of extreme precipitation indices across 602 
multiple models reveals that higher precipitation thresholds used for model evaluation 603 
correspond to increased bias, indicating a lack of skill in modelling severe precipitation events. 604 
Finally, our results emphasized the superiority of UK-Met and Météo-France models 605 
throughout all four seasons. The ECCC and CMCC models demonstrate effectiveness, 606 
following UK-Met and Météo-France, across specific indices and regions. Model fusion 607 
emerges as a successful approach for predicting extreme events across different seasons. These 608 
findings highlight the effectiveness of the impact-based framework in thoroughly assessing 609 
forecast skills in representing climate and weather patterns across various models and seasons. 610 
 611 
Open Research 612 

The data used in this study were obtained from the European Centre for Medium-Range 613 

Weather Forecasts (ECMWF) Copernicus Climate Change Service, specifically from the 614 

ERA5 reanalysis dataset and C3S seasonal forecasts. These datasets are publicly available 615 

through the Copernicus Climate Data Store (CDS) at https://cds.climate.copernicus.eu under 616 

an Open Data Commons Attribution 4.0 International (ODC-BY 4.0) license. To access the 617 

data, users can register for a free account on the Copernicus Climate Data Store platform and 618 

follow the provided guidelines for data retrieval. The specific seasonal model version numbers 619 

used in this study are detailed in the supplementary material of the paper. 620 
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